Nitrogen utilization and metabolism in Ruminococcus albus 8.
نویسندگان
چکیده
The model rumen Firmicutes organism Ruminococcus albus 8 was grown using ammonia, urea, or peptides as the sole nitrogen source; growth was not observed with amino acids as the sole nitrogen source. Growth of R. albus 8 on ammonia and urea showed the same growth rate (0.08 h(-1)) and similar maximum cell densities (for ammonia, the optical density at 600 nm [OD600] was 1.01; and for urea, the OD600 was 0.99); however, growth on peptides resulted in a nearly identical growth rate (0.09 h(-1)) and a lower maximum cell density (OD600 = 0.58). To identify differences in gene expression and enzyme activities, the transcript abundances of 10 different genes involved in nitrogen metabolism and specific enzyme activities were analyzed by harvesting mRNA and crude protein from cells at the mid- and late exponential phases of growth on the different N sources. Transcript abundances and enzyme activities varied according to nitrogen source, ammonia concentration, and growth phase. Growth of R. albus 8 on ammonia and urea was similar, with the only observed difference being an increase in urease transcript abundance and enzyme activity in urea-grown cultures. Growth of R. albus 8 on peptides showed a different nitrogen metabolism pattern, with higher gene transcript abundance levels of gdhA, glnA, gltB, amtB, glnK, and ureC, as well as higher activities of glutamate dehydrogenase and urease. These results demonstrate that ammonia, urea, and peptides can all serve as nitrogen sources for R. albus and that nitrogen metabolism genes and enzyme activities of R. albus 8 are regulated by nitrogen source and the level of ammonia in the growth medium.
منابع مشابه
Muralytic Activities of Ruminococcus albus 8.
Ruminococcus albus 8 was cultured with isolated alfalfa cell walls as the carbon source. The culture broth was assayed for muralytic enzyme activities. The effect, with respect to the production of such muralytic enzymes, of growing the microorganism on different carbon sources was also investigated. Also, the rates of solubilization and utilization by R. albus of individual alfalfa cell wall s...
متن کاملAlbusin B, a bacteriocin from the ruminal bacterium Ruminococcus albus 7 that inhibits growth of Ruminococcus flavefaciens.
An approximately 32-kDa protein (albusin B) that inhibited growth of Ruminococcus flavefaciens FD-1 was isolated from culture supernatants of Ruminococcus albus 7. Traditional cloning and gene-walking PCR techniques revealed an open reading frame (albB) encoding a protein with a predicted molecular mass of 32,168 Da. A BLAST search revealed two homologs of AlbB from the unfinished genome of R. ...
متن کاملEffect of treating recycled poultry bedding with tannin extracted from pomegranate peel on rumen fermentation parameters and cellulolytic bacterial population in Arabian fattening lambs
This study was conducted to investigate the effects of recycled poultry bedding (RPB) treated with different levels of pomegranate peel extract (PPE) as a tannin source on cellulolytic bacterial population and rumen fermentation parameters of fattening lambs. For this purpose, twenty-eight Arabian lambs (19.70 ± 2.45 kg body weight, 90 ± 12 days of age) were randomly assigned to four dietary tr...
متن کاملFunctional analyses of multiple lichenin-degrading enzymes from the rumen bacterium Ruminococcus albus 8.
Ruminococcus albus 8 is a fibrolytic ruminal bacterium capable of utilization of various plant cell wall polysaccharides. A bioinformatic analysis of a partial genome sequence of R. albus revealed several putative enzymes likely to hydrolyze glucans, including lichenin, a mixed-linkage polysaccharide of glucose linked together in β-1,3 and β-1,4 glycosidic bonds. In the present study, we demons...
متن کاملMultiple cellobiohydrolases and cellobiose phosphorylases cooperate in the ruminal bacterium Ruminococcus albus 8 to degrade cellooligosaccharides
Digestion of plant cell wall polysaccharides is important in energy capture in the gastrointestinal tract of many herbivorous and omnivorous mammals, including humans and ruminants. The members of the genus Ruminococcus are found in both the ruminant and human gastrointestinal tract, where they show versatility in degrading both hemicellulose and cellulose. The available genome sequence of Rumi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 80 10 شماره
صفحات -
تاریخ انتشار 2014